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’\‘ Outline

— Motivation for control at optical scale
— An example of optical slicing

— Applications of optical probing & control
— Optical stochastic cooling (OSC)

— OSC for muons : an example

— Fundamental issues

— Proposed compact ring

— |nvestigators
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~ Particle Accelerators to date have taken full advantage of the microwave part of
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| | BERKELEY LAB

Optical Manipulation of Particle Beams

Today we can complement the GHz microwave rf technology by state-of-the-art
short pulse high power compact lasers as work horses for particle accelerators.

However, just as in today’ s microwave technology involving beam manipulation
over fractions of mms in time-scalesof picosecondsat frequenciesof GHz, one
would have to learn to manipulate and control signals and particles at optical
wavelengths of microns, in time-scales of femtoseconds and at frequencies of THz
and higher in order to take advantage of today’ s optical technology.

The development of femtosecond kickers, choppers, bunch rotators etc., and THz
manipulation of beams will be one of the most challenging jobs for future beam
applications.

We are encouraged by our recently successful experimental experience.
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Laser Femto-slicing of Electron Beams
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Reference: —» Unique experiment in the world.

Generation of Femtosecond Pulses of Synchrotron Radiation

R. Schoenlein, S. Chattopadhyay, H.H.W. Chong, T.E. Glover, —> Berkeley L ab pioneering a new field

P.A. Heimann, C.V. Shank, A.A. Zholents, M.S. Zolotorev Research: Optical Manipulation of

Science, Vol. 287, No. 5461, March 24, 2000, p. 2237. Beams

RIS L AWRENCE BERKELEY NATIONAL LABORATORY



~

rrerecrr

:nl Applications of Optical Control

. Beam dlicing

« Femto-second and atto-second control

(10-159) (10-189)
« Optical diagnostics of beam granularity in phase space
. Luminosity control

» Optical stochastic cooling of phase space:

— Unstable particles: Muons for neutrino sources & muon collider

Hadrons : for very large hadron collider
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Onptical Stochastic Coolin
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A.A. Mikhailichenko and M.S. Zolotorev, “ Optical stochastic cooling”,
Phys. Rev. Lett. , Vol. .71, N25, (1993), p. 4146.

M. Zolotorev and A. Zholents, “ Transit-time Method of Optical

Sto rage ring Stochastic Cooling”, Phys. Rev. E, Vol. 50, No. 4, (1994), p. 3087.
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OSC uses optical amplifier and undulators as a pick-up and a kicker.
The amplifier bandwidth is ~10'3 Hz.

(Compare with ~10% Hz for microwave stochastic cooling)
Correspondingly, OSC has a potential for ~10* faster damping.
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~ Particle Beam isfully Resolved in Space & Time
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Phase-Space Cooling in Any One Dimension
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- A Particular List of Parametersfor a2 TeV x 2 TeV Muon
Collider Utilizing Optical Stochastic Cooling
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Units  ThisStudy CDR Ref.[8]

Beam energy TeVv 2 2
Circumference Km 8.08 8.08
Number of muons 4.5x108 2x1012
Number of bunches of each sign 2 2
Beta-function at the IP Lm 10 3000
Bunch length m 10 3000
Peak current KA 2 32
Transverse beam sizeat the P pm 1.3x103 3
Beam divergence at the IP 1.3x104 1x103
Beam energy spread 1x103 7x104
Beam-beam parameter 0.15 0.045
Repetition rate Hz 200 15

L uminosity Cm2s!l  1x10% 1 x 10%
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Parameters for Muon Cooling

Units Value
Beam energy GeV 100
Repetition rate Hz 200
Input beam characteristics
Number of muons 3x10°
Transverse emittance cm-rad 2x103
Longitudinal emittance,gs .S, cm 20
Beam energy spread,s 1x103
Bunch length, s, cm 20
Sretcher-compressor
Circumference m 300
Momentum compaction 0.33
Induction linac
Pulse duration S 1
Energy gain MeV +125
Damping rings
Circumference m 1100
Number of rings 3
Number of injected muons 2x10°
Beam energy spread, s 2x106
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Parameters for Muon Cooling, cont’d

— Units Value
Bunch length, s, m 100
Number of sample particles 25
Longitudinal damping time turns 75
Transverse damping time turns 30
Undulator period cm 50
Peak undulator field T 10
Number of periods 14
Dispersion function m 100
Beta function m 2

Optical amplifier
Number of amplifiers 10
Amplified light energy J 1
Average output power W 200
Amplitude gain 3.8x104
Wavelength nm 800
Output beam characteristics
Number of beams 4.5x108
Transverse emittance cm-rad 3x10°7
Longitudinal emittance cm 2x102

Cooling time ms 4
CENTER FOR BEAM PHYSICS LAWRENCE BERKELEY NATIONAL LABORATORY



— ., A Scheme for Optical Stochastic
_ Cooling of Muons

T Coupler-
.*_
N detuner
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Cooling section:

cooler, 80m

mixer, 30m
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.1\.‘ Fundamental |ssues

Weexpect: <«t>-1 ~ - cooling time

[N

But, in practice, there is always amplifier noise which
modifies cooling rate to

1
[Ns+ Ny

<t>-1 ~

where N, = sample population that can generate a noise
signal equivalent to the optical amplifier noise

— — —» — WhatisN_?
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.1\.‘ Fundamental |ssues

Each particle emits‘a’ photons per
turn, where a = fine structure
constant ~ 1/137

Total no. of equivalent noise photons
ISs~a N,
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.’h‘ Fundamental |ssues

Theoretical minimum of optical
amplifier noise is one noise photon
per optical mode

aN,~1=N_=1a

<t>-1 ~ 1
— [N+ (Va)]
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:.\.‘ Fundamental |ssues

For large sample population, N, ~ 107 - 10°,
the number of equivalent
photons from sample and amplifier :

N,=a Ng+aN,~(10°-10") + 1 >> 1.

Thislarge no. of photons generate an electric
field in the far-field regime which is describable
as classical light

L arge “degeneracy parameter”: large number of photonsin a coherence volume
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’\‘ Fundamental |ssues

For small sample population, N~ 50 - 100,
the number of equivalent
photons from sample and amplifier :
N,~ (05-1) +1~0(2).
These few photons generate afield which
Isintrinsically non -classical and quantum mechanical.

Small “degeneracy parameter”: small number of photons in a coherence volume

How does stochastic cooling work in
this quantum limit ?7?
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N Radiation for Charged Particles—
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A Simple Physical Vision
e ey

http://www.lbl.gov/educational sites’The World of Beams
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Proposed Compact Storage Ring
S |

Laser undulator cooling
laser X-Tays

S S > )
. . . ﬁ/ am liﬁer\@l;ﬁ
. Feagblllty of optical stochastic — & “p
cooling
E Optical stochastic cooling

* Explorethephysics of stochastic oIf pe

cooling at the quantum limit o [ 10m Po

Scaled beam dynamicsof LVHC =

at high time-shift limit of Av ~s1 S
V ~ @ |
5 Beam energy =150 MeV @
e Technology of per manent a, v, S
magnet technology ke
_ _ _ “crab” RF “crab” RF
o Optical manipulation of beams
* Optical diagnosticsof THz
frequencies @
Femtosecond coherent IR pulses
via RF orbit deflection , Figure 2. - Zero-torque
= R ——— :'o 1 ' adjustable dipole magnet.
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via RF orbit deflection
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iul Proposed Compact Storage Ring

e Design isunder way

e Cost goal ~$5M - $10M + Operating

* Proposed ring complements existing national linac-based
facilities at other labs.

e Bringsin science and technology issuesthat arecritical
to HEP and cannot be addressed elsewhere (requires
storage ring based facility).

 Unique Berkeley Lab proposal based on current R&D
optical technology, not duplicated by work elsewhere.
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